λ_c -Separation Axioms Via λ_c -open sets

Sarhad F. Namiq

Mathematics Department, College of Education, University of garmian, Kurdistan- Region, Iraq.email: sarhad.faiq@garmian.edu.krd

Abstract. In this paper, we define new types of separation axioms which we call $\lambda_c - T_i$ ($i = 0, \frac{1}{2}, 1, 2$), and characterize these spaces by using the notion of λ_c -closed and λ_c

-open sets.

----- ♦ ------

Keywors. λ_c -open set, λ_c -closed set, $\lambda_c - T_i$ spaces.

1. Introduction

Ahmad and Hussain [1] continued to study the properties of γ -operations on topological spaces introduced by Kasahara[2]. They also defined and discussed neighborhood several properties of γ -neighborhood, γ neighborhood base at x, γ -closed neighborhood, γ -limit point, γ -isolated points. SarhadFaiqNamig& Alias B. Khalaf[3],[4],[5],[6],[7],[8]. They study a new class of semi open sets, which they call a λ -open set and λ_c -open set in topological spaces and also they define the notions of λ -interior, λ -limit point, λ -derived set. In the second section, we define the notions of λ_c - interior, λ_c -limit point and λ_c -derived set of a set and they show that some of their properties are analogous to the properties in open sets. Moreover, we give some additional properties of λ_c closure and λ_c -interior of a set.

3.Preliminaries

In 1963, Levine [9] defined semi open sets and semi continuous functions in a space X. SarhadFaiqNamiq and Alias B.Khalaf[3],[4],[5],[6], They introduce new classes of semi open sets called λ -open and λ_c -open sets in topological spaces. They consider λ as

a function defined on the family of semiopen sets of X into the power set of X and $\lambda : SO(X) \rightarrow P(X)$ is called an s-operation if $V \subseteq \lambda(V)$ for each V.

 The
 followings
 depended

 on[3],[4],[5],[6],[7],[8].

Definition 3.1

Let (X,τ) be a topological space and $\lambda: SO(X) \to P(X)$ be an soperation. Then a subset A of X is called a λ -open set if for each $x \in A$ there exists a semi open set Usuch that $x \in U$ and $\lambda(U) \subseteq A$. The complement of a λ -open set is said to be λ -closed. The family of all λ -open (resp. λ -closed) subsets of a topological space (X,τ) is denoted by $SO_{\lambda}(X,\tau)$ or $SO_{\lambda}(X)$ (resp. $SC_{\lambda}(X,\tau)$ or $SC_{\lambda}(X)$).

Definition 3.2

 $A\lambda$ -open subset A of a topological space (X, τ) is called λ_c -open if for each $x \in A$ there exists a closed set Fsuch that $x \in F \subseteq A$. The complement of a λ_c -open set is said to be λ_c -closed. The family of all λ_c -open (resp. λ_c -closed) subsets of a topological space (X, τ) is denoted by $SO_{\lambda c}(X, \tau)$ or $SO_{\lambda c}(X)$ (resp. $SC_{\lambda c}(X, \tau)$ or $SC_{\lambda c}(X)$).

Remark 3.3

From the definition of s-operation, it is clear that $\lambda(X) = X$ for any soperation λ . Through out this thesis we assume that $\lambda(\phi) = \phi$, for any soperation λ .

Definition 3.4

A subset of topological space (X,τ) is said to be λ_c -clopen if it is both λ_c open and λ_c -closed set. The family of λ_c -clopen sets of X, denoted by $CO_{\lambda c}(X)$.

Definition 3.5

Let (X, τ) be a topological space and let *A*be a subset of *X*. Then:

- (1) The λ -closure of $A(\lambda Cl(A))$
 - is the intersection of all λ closed sets containing *A*.
- (2) The λ-interior of A (λInt(A)) is the union of all λ_c-open sets of X contained in A.
- (3) A point x∈X is said to be a λ-limit point of A if every λ-open set containing x contains a point of A different from x, and the set

of all λ -limit points of A is called the λ -derived set of Adenoted by $\lambda d(A)$.

Proposition 3.6

Let (X, τ) be a topological space and $A \subseteq X$. For each point $x \in X$, $x \in \lambda Cl(A)$ if and only if $V \cap A \neq \phi$ for every $V \in SO_{\lambda}(X)$ such that $x \in V$.

Theorem 3.7

Suppose that $f:(X,\tau) \to (Y,\sigma)$ is (λ,γ) -continuous and (λ,γ) -closed function, then:

- For every g-λ_c -closed set A of
 (X, τ) the image f(A) is a g γ_c-closed set.
- (2) For every $g \gamma_c$ -closed set *B* of (Y, σ) the inverse set $f^{-1}(B)$ is a $g - \lambda_c$ -closed set.

Theorem 3.8

If
$$f: (X, \tau) \rightarrow (Y, \sigma)$$
 is a
contra (λ, γ) -continuous
function and satisfies the (λ, γ)
-interiority condition, then f is
 (λ, γ) -continuous.

....

Theorem 3.9

Let λ : $SO(X) \rightarrow P(X)$ be an soperation. Then for each $x \in X$, $\{x\}$ is λ_c -closed or $X \setminus \{x\}$ is $g - \lambda_c$ -closed in (X, τ) .

Theorem 3.10

If a subset A of a topological space (X, τ) is a $g \cdot \lambda_c$ -closed set in X,then $\lambda_c Cl(A) \setminus A$ does not contain any non empty λ_c -closed set in X.

Definition 3.11

A topological space (X, τ) is said to be:

- (1) semi- T_0 [10] if for any distinct pair of points in X, there is a semi open set containing one of the points but not the other.
- (2) semi-T₁[10] if for any distinct pair of points x and y in X, there is a semi open set U in X containing x but not y and a semi open set V in X containing y but not x.
- (3) semi-T₂[10] if for any distinct pair of points x and y in X, there exist semi open sets U and V in X

containing x and y, respectively, such that $U \cap V = \phi$;

(4) semi-
$$T_{1/2}$$
- Space[11] if
every *sg*-closed set is semi
closed.

4.1 On $\lambda_c - T_i$ Spaces ($i = 0, \frac{1}{2}, 1, 2$)

Definition 4.1.1

Let (X, τ) be a topological space and $A \subseteq X$. Then the class of λ_c -open sets in A $(SO_{\lambda c}(A))$ is defined in a natural way as:

 $SO_{\lambda c}(A) = \{A \cap V, V \in SO_{\lambda c}(X)\},\$ That is *W* is λ_c -open in *A* if and only if

 $W = A \cap V$, where V is a λ_c -open set in X.

Definition 4.1.2

A topological space (X, τ) is called a λ_c - T_0 space, if for each distinct points $x, y \in X$ there exists a λ_c -open set Ucontains one of them but not the other.

Example 4.1.3

Let $X = \{a, b, c\}$, and $\tau = P(X)$. We define an s-operation $\lambda : SO(X) \rightarrow$

P(X) as:

$$\lambda(A) = \begin{cases} A & \text{if } A = \{a\} \text{ or } \{b,c\} \text{ or } \{a,c\} \text{ or } \phi \\ X & \text{Otherwise} \end{cases}$$

Then a topological space (X, τ) is a

 λ_c - T_0 space.

Remark 4.1.4

Since every λ_c -open set is semi open, so every λ_c - T_0 space is a semi- T_0 . But the converse is not true in general as it is seen in the following example:

Example 4.1.5

Let $X = \{a, b, c\}$, and $\tau = P(X)$. We

define an s-operation $\lambda : SO(X) \rightarrow$

P(X) as:

$$\lambda(A) = \begin{cases} A & \text{if } A = \{a\} \text{ or } \phi \\ X & \text{Otherwise} \end{cases}$$

Then a topological space (X, τ) is a semi- T_0 but it is not $\lambda_c - T_0$ space.

Theorem 4.1.6

A topological space (X, τ) is $\lambda_c - T_0$ if and only if for eachdistinct points x and y in X, $x \notin \lambda_c Cl(\{y\})$ or y $\notin \lambda_c Cl(\{x\})$. **Proof.**Let $x \neq y$ in $a\lambda_c - T_0$ space X. Then there exists $a\lambda_c$ -open set U containing one of them but not the other, without loss of generality, we assume that U contains x but not y. Then $U \cap \{y\} = \phi$, this implies that $x \notin \lambda_c Cl(\{y\})$.

Conversely, let $x, y \in X$ such that

 $x \neq y$. Then by hypothesis $x \notin z$

 $\lambda_c Cl(\{y\})$ or $y \notin \lambda_c Cl(\{x\})$. With out

loss any of generality, we assume that y

 $\notin \lambda_c Cl(\{x\}). \text{ Then } X \setminus \lambda_c Cl(\{x\}) \text{ is}$ an λ_c - open subset of X containing y. Since $x \in \lambda_c Cl(\{x\})$, then $x \notin$

 $X \setminus \lambda_c Cl(\{x\})$. So X is a $\lambda_c - T_0$ space.

ΕR

Theorem 4.1.7

Every subspace of a λ_c - T_0 space X is a λ_c - T_0 space.

Proof.Let (X,τ) be a $\lambda_c - T_0$ space, and $A \subseteq X$. To show A is a $\lambda_c - T_0$ space. Let a, b be two distinct points of A. Since A $\subseteq X$, a, b are also distinct points of X. Since (X,τ) is a $\lambda_c - T_0$ space, there exists a λ_c - open set U in X such that a $\in U$ and $b \notin U$ or $a \notin U$ and $b \in U$. If a $\in U$ and $b \notin U$, then $U \cap A$ is a λ_c - open set in A contain a not containing b, it follows that A is a $\lambda_c - T_0$ space. If $a \notin U$ U and $b \in U$ then similarly we get the result.

Theorem 4.1.8

The property of a space being $a \lambda_c - T_0$ space is preserved under a bijective and (λ, γ) -open functions.

Proof.Let (X,τ) be a $\lambda_c - T_0$ space and let f be a one to one (λ,γ) -open function of (X,τ) onto a topological space (Y,σ) . Then we want to show that (Y,σ) is also $\gamma_c - T_0$. Let a, b be any two distinct points of Y. Since f is an onto function, there exist distinct points c, d of X such that f(c)=a and f(d)=b. Since (X,τ) is a λ_c - T_0 space, there exists a λ_c -open set U contain one of them, say c in X such that U does not contain d. Since f is a one to one (λ,γ) -open function, f(U) is a γ_c -open set containing f(c)=a and not containing f(d)=b. In other words, f(U) is γ_c -open set containing a butnot b. Hence (Y,σ) is also γ_c - T_0 .

Theorem 4.1.9

Let (X, τ) be a topological space and let (Y, σ) be a γ_c - T_0 space. Let $f:(X,\tau) \to (Y,\sigma)$ be a one to one, (λ, γ) -continuous function. Then (X,τ) is also a λ_c - T_0 space. **Proof.**Let a, b be any two distinct points of X. Since f is one to one, and $a \neq b$, then $f(a) \neq (b)$. Let c = f(a), d = f(b) so that $a = f^{-1}(c)$ and $b = f^{-1}(d)$. Where $c, d \in Y$ such that $c \neq d$. Since (Y, σ) is a γ_c - T_0 space, there exists γ_c -open set H such that $c \in H$ but $d \notin H$. Since f is (λ, γ) -continuous, $f^{-1}(H)$ is λ_c -open. Now, since $c \in H$, then $f^{-1}(c) \in$

 $f^{-1}(H)$, so $a \in f^{-1}(H)$ but since f is one to one, so $b \notin f^{-1}(H)$. Hence

 (X,τ) is also a λ_c - T_0 space.

Corollary 4.1.10

If $f : (X, \tau) \to (Y, \sigma)$ is a one to one, contra (λ, γ) -continuous function and satisfies the (λ, γ) -interiority condition, and let (Y, σ) be a γ_c - T_0

space.

Then (X, τ) is also $\lambda_c - T_0$ space.

Proof. Follows from Theorem 3.8 and Theorem 4.1.9.

Definition 4.1.11

A topological space (X, τ) is said to be $\lambda_c - T_{1/2}$ space if every $g - \lambda_c$ -closed set in (X, τ) is λ_c -closed.

Theorem 4.1.12

A topological space (X, τ) with an s-operation λ is $\lambda_c - T_{1/2}$ if and only if each singleton $\{x\}$ of X is λ_c -closed set or λ_c - open set.

Proof.Suppose $\{x\}$ is not λ_c -closed. Then by Proposition 3.9, $X \setminus \{x\}$ is g- λ_c -closed. Now since (X, τ) is λ_c - $T_{1/2}$, then $X \setminus \{x\}$ is λ_c -closed i.e. $\{x\}$ is λ_c -open. Conversely, let Abe any g- λ_c - closed set (X,τ) and $x \in \lambda_c Cl(A)$. By in hypothesis we have $\{x\}$ is λ_c -closed or λ_c -open. If $\{x\}$ is λ_c -closed. We have to show $x \in A$. For this, if we suppose that $x \notin A$, then $x \in \lambda_c Cl(A) \setminus A$ which is not possible by Proposition 3.10.Hence $x \in A$. Therefore, $\lambda_c Cl(A) = A$, i.e. A is λ_c - closed. So (X, τ) is $\lambda_c - T_{1/2}$. On theother hand, if $\{x\}$ is λ_c -open $x \in \lambda_c Cl(A), \{x\} \cap A \neq \phi.$ then as Hence $x \in A$. So A is λ_c - closed.

Theorem 4.1.13

Every $\lambda_c - T_{1/2}$ space is $\lambda_c - T_0$ space. **Proof.**Let *x* and *y* be two distinct points of *X*. Then by Theorem 4.1.12, we have $\{x\}$ is λ_c -closed or λ_c -open. If $\{x\}$ is λ_c -closed set, then $\lambda_c Cl(\{x\}) = \{x\}$, and since $y \neq x$, then $y \notin \lambda_c Cl(\{x\})$. Hence *X* is a $\lambda_c - T_0$ space, and if $\{x\}$ is λ_c - open, then the set $U = \{x\}$ is an λ_c open subset of *X* which not contains *y*. Then $y \notin \lambda_c Cl(\{x\})$. Thus *X* is a $\lambda_c - T_0$ space by Theorem 4.1.6. The converse of Theorem 4.1.13, is not true in general as shown by the following example.

Example 4.1.14

Let
$$X = \{a, b, c\}$$
, and $\tau = P(X)$.

We define an s-operation $\lambda : SO(X) \rightarrow$

P(X) as:

$$\lambda(A) = \begin{cases} A & \text{if } A = \{a\} \text{ or } \{a,b\} \text{ or } \phi \\ X & \text{Otherwise} \end{cases}$$

Then a topological space (X,τ) is a $\lambda_c - T_0$ space but not a $\lambda_c - T_{1/2}$ space because $\{a,c\}$ is $g - \lambda_c$ - closed but not λ_c - closed

Remark 4.1.15

It is clear from the definitions that, every $\lambda_c - T_{1/2}$ is semi- $T_{1/2}$, but the converse is not true in general, we refer to Example 4.1.14, in which (X, τ) is a semi- $T_{1/2}$, but not $\lambda_c - T_{1/2}$ space.

Theorem 4.1.16

If a topological space (X, τ) is $\lambda_c - T_{1/2}$, then every subset of X is the intersection of all λ_c - open sets and all λ_c - closed sets that containing it. **Proof.**Let (X, τ) be $a \lambda_c - T_{1/2}$ space with $F \subseteq X$ arbitrary. Then F = $\bigcap \{ X \setminus \{x\} : x \notin F \}$ is an intersection of λ_c -open sets and λ_c closed sets by Theorem 4.1.12. The result follows.

Theorem 4.1.17

Every subspace of a λ_c - $T_{1/2}$ space X is a λ_c - $T_{1/2}$ space.

Proof.Let (X,τ) be a $\lambda_c - T_{1/2}$ space, and $A \subseteq X$. To show A is a $\lambda_c - T_{1/2}$ space. Let $y \in A$. Since $A \subseteq X$, then $y \in X$ and by Theorem 4.1.12, $\{y\}$ is a λ_c closed set or λ_c - open set. Implies that $\{y\} \cap A = \{y\}$ is a λ_c - closed set or λ_c - open set in A. Then by Theorem 4.1.12, A is a $\lambda_c - T_{1/2}$ space.

Theorem 4.1.18

Let $f:(X,\tau) \to (Y,\sigma)$ be a (λ,γ) continuous and (λ,γ) -closed function. Then:

- (1) If f is injective and (Y, σ) is a $\gamma_c - T_{1/2}$ space, then (X, τ) is a $\lambda_c - T_{1/2}$ space.
- (2) If f is surjective and (X, τ) is a $\lambda_c - T_{1/2}$ space, then (Y, σ) is a $\gamma_c - T_{1/2}$ space.

Proof.(1) Let A be a g- λ_c -closed set in (X, τ) . To show that A is λ_c - closed. By Theorem 3.7, we have f(A) is $g - \gamma_c$ closed. Since (Y, σ) is $\gamma_c - T_{1/2}$, f(A)is a γ_c -closed set. Since f is injective (λ, γ) -continuous, and $f^{-1}(f(A)) = A$ is $a\lambda_a$ - closed set in X. Hence (X, τ) is a λ_c - $T_{1/2}$ space. (2) Let B be a $g - \gamma_c$ -closed set in (Y,σ) . By Theorem 3.7, $f^{-1}(B)$ is g- λ_c -closed. Since (X, τ) is a λ_c - $T_{1/2}$ space, $f^{-1}(B)$ is λ_c -closed. Since fsurjective and (λ, γ) -continuous, is $f(f^{-1}(B)) = B$ is a γ_c -closed set in Y. Therefore (Y, σ) is $\gamma_c - T_{1/2}$.

Definition 4.1.19

A topological space (X, τ) is called a $\lambda_c - T_1$ space, if for each distinct points $x, y \in X$, there exist λ_c - open sets U,Vcontaining x and y respectively such that $y \notin U$ and $x \notin V$.

Theorem 4.1.20

A topological space (X, τ) is a $\lambda_c - T_1$ space if and only if every singleton subset $\{x\}$ of X is λ_c -closed. **Proof.**Let x and y be two distinct points of X. Then $X \setminus \{x\}$ is a λ_c -open set which contains y but does not contain x. Similarly $X \setminus \{y\}$ is a λ_c -open set which contains x but does not contain y. Hence the space (X, τ) is $\lambda_c - T_1$.

Conversely, let x be any point of X. We want to show $\{x\}$ is λ_c -closed, that is, to show that $X \setminus \{x\}$ is λ_c -open set. Let $y \in X \setminus \{x\}$. Then $y \neq x$. Since X is $\lambda_c - T_1$, there exists a λ_c -open set H such that $y \in H$ but $x \notin H$. It follows that $y \in H \subseteq X \setminus \{x\}$. Hence $\{x\}$ is λ_c closed.

Remark 4.1.21

From the definition of $\lambda_c - T_1$ and semi- T_1 space, every $\lambda_c - T_1$ space is semi- T_1 , but the converse is not true in general, clearly in Example 4.1.14, (X, τ) is a semi- T_1 , but not $\lambda_c - T_1$ space.

Proposition 4.1.22

If $\lambda : SO(X) \to P(X)$ is a λ -regular s-operation. Then a topological space (X, τ) is a λ_c - T_1 space, if and only if every finite subset of X is λ_c -closed.

Proof.Obvious.

Theorem 4.1.23

Every $\lambda_c - T_1$ space is a $\lambda_c - T_{1/2}$ space. **Proof.** Suppose that *A* is a set which is not λ_c -closed, then there exists $x \in \lambda_c Cl(A) \setminus A$, so $\{x\} \subseteq \lambda_c Cl(A) \setminus A$ and $\{x\}$ is λ_c -closed, since we are in a $\lambda_c - T_1$ space, and as $\{x\} \neq \phi$, by Theorem 3.10, *A* is not g- λ_c -closed.

The converse of Theorem 4.1.23, is not true in general and we can show it by the following example.

Example 4.1.24

Let $X = \{a, b\}$, and $\tau = P(X)$. We define an s-operation $\lambda : SO(X) \rightarrow$

P(X) as:

$$\lambda(A) = \begin{cases} A & \text{if } A = \{a\} \text{ or } \phi \\ X & \text{Otherwise} \end{cases}$$

Then a topological space (X, τ) is a $\lambda_c - T_{1/2}$ space but not $\lambda_c - T_1$ space.

Theorem 4.1.25

The property of a space being $a \lambda_c - T_1$ space is preserved under bijective and (λ, γ) -open functions.

Proof.Let (X,τ) be a $\lambda_c - T_1$ space and let f be a one to one (λ,γ) -open function of (X,τ) onto a topological space (Y,σ) . Then we want to show that (Y,σ) is also a γ_c - T_1 . Let a, b be any two distinct points of Y. Since f is an onto function, there distinct points c, d of Xexistsuch that f(c)=a and f(d)=b. Since (X,τ) is a λ_c - T_1 space, there exist λ_c - open sets U and Vsuch that $c \in U$ but $d \notin U$ and $d \in V$ but $c \notin V$. Since f is a one to one (λ,γ) -open function, f(U) and f(V)are γ_c - open sets containing a=f(c) $\in f(U)$ but $b = f(d) \notin f(U)$ and b = $f(d) \in f(V)$ but $a = f(c) \notin f(V)$. Hence (Y,σ) is alsoa γ_c - T_1 space.

Theorem 4.1.26

Let (X, τ) be a topological space and let (Y, σ) be a γ_c - T_1 space. If $f:(X, \tau) \to (Y, \sigma)$ is a one to one and (λ, γ) -continuous function.Then (X, τ) is also a λ_c - T_1 space.

Proof.Let a, b be any two distinct points of X. Since f is one to one and $a \neq b$, then $f(a) \neq f(b)$. Let c = f(a), d = f(b) so that $a = f^{-1}(c)$ and $b = f^{-1}(d)$. Where $c, d \in Y$ such that $c \neq d$. Since (Y, σ) is $\gamma_c - T_1$ space, there exist γ_c -open sets H and K such that $c \in H$, $d \notin H$, $d \in K$ and $c \notin K$. Since f is (λ, γ) -continuous, $f^{-1}(H)$ and $f^{-1}(K)$ are λ_c -open sets. Now $c \in H$, $d \notin H$, $d \in K$ and $c \notin K$. Then by hypothesis $f^{-1}(c) \in f^{-1}(H)$, $f^{-1}(d) \notin$ $f^{-1}(H)$, $f^{-1}(d) \in f^{-1}(K)$ and $f^{-1}(c) \notin f^{-1}(K)$. So $a \in f^{-1}(H)$, $b \notin f^{-1}(H)$, $b \in$ $f^{-1}(K)$ and $a \notin f^{-1}(K)$. Hence (X, τ) is also $\lambda_c - T_1$ space.

Corollary 4.1.27

Let (X, τ) be a topological space and let (Y, σ) be a $\gamma_c - T_1$ space. If $f: (X, \tau) \to (Y, \sigma)$ is a one to one and (λ, γ) -continuous function. Then (X, τ) is a $\lambda_c - T_i$ space, for $i = 0, \frac{1}{2}$. **Proof.**Follows from Theorem 4.1.26, and also we have every $\lambda_c - T_1$ space is $\lambda_c - T_i$ space, for $i = 0, \frac{1}{2}$.

Corollary4.1.28

If $f:(X,\tau) \to (Y,\sigma)$ is a one to one, contra (λ,γ) -continuous function and satisfies the (λ,γ) -interiority condition, and let (Y,σ) be a γ_c - T_1 space. Then (X,τ) is a λ_c - T_i space, for $i = 0, \frac{1}{2}$.

Proof. Follows from Theorem 3.8 and Corollary 4.1.27. **Theorem 4.1.29** Let $f:(X,\tau) \to (Y,\sigma)$ be an onto (λ,γ) -closed function. If X is a λ_c - T_1 space, then so is Y. Proof. Let $y \in Y$. Then there exists $x \in X$ such that f(x) = y. Since $x \in X$ and X is a $\lambda_c - T_1$ space, then by Theorem 4.1.20, $\{x\}$ is λ_c -closed. f is (λ, γ) -closed, Since $f({x}) = {y} \gamma_c$ -closed. Hence by Theorem 4.1.20, Y is a γ_c - T_1 space. **Theorem 4.1.30** Every subspace of a λ_c - T_1 space X is a λ_c - T_1 space. **Proof.**Let (X,τ) be a λ_c - T_1 space, and $A \subset X$. Let $a \in A$. Then $a \in X$ and $\{a\}$ is λ_c -closed in X (Since (X,τ) is λ_c - T_1 space). Therefore $\{a\} = \{a\} \cap A$

- is λ_c -closed A. Thus by Theorem
- 4.1.20, Ais a $\lambda_c T_1$ space.

Definition 4.1.31

A topological space (X, τ) is called

a λ_c -symmetric space, if for x and y in

X, $x \in \lambda_c Cl(\{y\})$ implies that $y \in$

 $\lambda_c Cl(\{x\}).$

Theorem 4.1.32

Let (X, τ) be a λ_c -symmetric

space. Then the following statements are equivalent:

- (1) (X,τ) is $\lambda_c T_0$.
- (2) (X,τ) is $\lambda_c T_{1/2}$
- (3) (X,τ) is $\lambda_c T_1$.

Proof. It is enough to prove only that (1) gives (3). Let $x \neq y$ and since (X, τ) is

 $\lambda_c - T_0$, we may assume that

 $x \in U \subseteq X \setminus \{y\}$ for some $U \in$

 $SO_{\lambda c}(X)$. Then $x \notin \lambda_c Cl(\{y\})$ and

hence $y \notin \lambda_c Cl(\{x\})$. Therefore, there

exists $V \in SO_{\lambda c}(X)$ such that

 $y \in V \subseteq X \setminus \{x\}$ and (X, τ) is a

 λ_c - T_1 space.

4.2. Some properties of separation

axioms via λ_c - open set

Theorem 4.2.1

Let (X,τ) be a λ_c -symmetric topological space and let (Y,σ) be a γ_c -

 T_0 space. If $f:(X,\tau) \to (Y,\sigma)$ is a one to one and (λ, γ) -continuous function. Then (X, τ) is $\lambda_c - T_i$ space, for $i = 0, \frac{1}{2}, 1$. **Proof.**Follows from Theorem 4.1.9 and Theorem 4.1.32. Theorem 4.2.2 Let (X,τ) be a λ_c - symmetric topological space and let (Y, σ) be a γ_c - $T_{\scriptscriptstyle 1/2}$ space. If $f:(X,\tau) \to (Y,\sigma)$ be a one to one , (λ, γ) -continuous and (λ, γ) -closed function. Then (X, τ) is $\lambda_c - T_i$ space, for $i = 0, \frac{1}{2}, 1$. **Proof.**Follows from Theorem 4.1.18 andTheorem 4.1.32. **Definition 4.2.3** A topological space (X, τ) is called a

 $\lambda_c - T_2$ space if for each two distinct points $x, y \in X$ there exist λ_c -open sets U, V such that $x \in U, y \in V$ and U $\cap V = \phi$.

Remark 4.2.4

From the definition of $\lambda_c - T_2$ and semi- T_2 space, every $\lambda_c - T_2$ is semi- T_2 , but the converse is not true in general, clearly in Example 4.1.14, (X, τ) is a semi- T_2 , but not $\lambda_c - T_2$ space.

Theorem 4.2.5

Every $\lambda_c - T_2$ space is $\lambda_c - T_1$ space.

Proof.Obvious.

The converse of Theorem 4.2.5, is not true in general and we can show it by the following example.

Example 4.2.6

Let $X = \{a, b, c\}$, and $\tau = P(X)$.

We define an s-operation λ : $SO(X) \rightarrow$

P(X) as:

$$\lambda(A) = \begin{cases} A & \text{if } A = \{a,b\} \text{ or } \{a,c\} \text{ or } \{b,c\} \text{ or } \phi \end{cases} \quad \text{Hence} \quad (Y,\sigma) \text{ is} \\ X & \text{Otherwise} \qquad \text{alsoa } \gamma_c - T_2 \text{ space.} \end{cases}$$

Clearly (X, τ) is $\lambda_c - T_1$ space, but it is not $\lambda_c - T_2$.

Theorem 4.2.7

The property of a space being a λ_c - T_2 space is preserved under bijective and (λ, γ) -open functions.

Proof.Let (X,τ) be a λ_c - T_2 space and let f be a one to one (λ,γ) -open function of (X,τ) onto another topological space (Y,σ) . Then we want to show that (Y,σ) is also γ_c - T_2 . Let a, b be any two distinct points of Y. Since f is an onto function, there distinct points c, d of Xexistsuch that f(c)=aand f(d)=b. Since (X,τ) is a λ_c - T_2 space, there exist disjoint λ_c -open sets U and V such that $c \in U$ but $d \notin U$ and $d \in V$ but $c \notin V$. Since f is a one to one (λ, γ) -open function, f(U) and f(V) are γ_c -open sets containing a = $f(c) \in f(U)$ but $b = f(d) \notin f(U)$ and $b = f(d) \in f(V)$ but $a = f(c) \notin$ f(V). And also we have $U \cap V = \phi$ and since f is one to one, this implies that $c_i^f(U) \cap f(V) = \phi$. Hence (Y, σ) is alsoa γ_c - T_2 space.

29

Theorem 4.2.8

Let (X, τ) be a topological space and let (Y, σ) be a γ_c - T_2 space. If $f:(X, \tau) \to (Y, \sigma)$ is a one to one (λ, γ) -continuous function. Then (X, τ) is λ_c - T_2 .

Proof.Let a, b be any two distinct points of X. Since f is one to one and $a \neq b$ then $f(a) \neq f(b)$. Let c = f(a), d = f(b) are distinct so that $a = f^{-1}(c)$ and $b = f^{-1}(d)$. Where $c, d \in Y$. Since (Y, σ) is a γ_c - T_2 space, there exist γ_c -open sets H and K such that $c \in H, d \in K$ and $H \cap K = \phi$. Since f is (λ, γ) -continuous, $f^{-1}(H)$

and
$$f^{-1}(K)$$
 are λ_c -open. Now

$$f^{-1}(H) \cap f^{-1}(K) \qquad = \qquad$$

 $f^{-1}(H \cap K) = f^{-1}(\phi) = \phi$, and

 $c \in H$ then $f^{-1}(c) \in f^{-1}(H)$, so $a \in f^{-1}(H)$ and $d \in K$, then $f^{-1}(d) \in f^{-1}(K)$, so $b \in f^{-1}(K)$.

Hence (X, τ) is also a λ_c - T_2 space.

Corollary 4.2.9

Let (X, τ) be a topological space and let (Y, σ) be a $\gamma_c \cdot T_2$ space. If $f:(X, \tau) \to (Y, \sigma)$ is a one to one and (λ, γ) -continuous function. Then (X, τ) is a $\lambda_c \cdot T_i$ space, for $i = 0, \frac{1}{2}, 1$.

Proof.Follows from Theorem 4.2.8, and also we have every $\lambda_c - T_2$ space is $\lambda_c - T_i$ space, for $i = 0, \frac{1}{2}, 1$.

Corollary 4.2.10

Let (X, τ) be a topological space and let (Y, σ) be a $\gamma_c \cdot T_2$ space. If $f:(X, \tau) \to (Y, \sigma)$ is a one to one and (λ, γ) -continuous function. Then (X, τ) is semi- T_i space, for $i = 0, \frac{1}{2}, 1, 2$.

Proof.Follows from Theorem 4.2.8 andCorollary 4.2.9, and also we have

every $\lambda_c - T_2$ space is semi- T_i space, for $i = 0, \frac{1}{2}, 1, 2.$

Corollary 4.2.10

Let (X, τ) be a topological space and let (Y, σ) be a γ_c - T_2 space. If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a one to one and contra (λ, γ) -continuous function and satisfies the (λ, γ) -interiority condition. Then (X, τ) is also $\lambda_c - T_2$ space.

Proof. Follows from Theorem 3.8 and Theorem 4.2.8.

Theorem 4.2.11

Every subspace of a $\lambda_c - T_2$ space X is a $\lambda_c - T_2$ space.

Proof.Let (X, τ) be a $\lambda_c - T_2$ space, and $A \subseteq X$. To show A is a $\lambda_c - T_2$ space. Let a, b be two distinct points of A. Since A $\subseteq X$, soa, b are also distinct points of X. Since (X, τ) is a $\lambda_c - T_2$ space, there exist disjoint λ_c - open sets U and V in X containa and b respectively. $G = U \cap A$ and $H = V \cap A$ are λ_c - open sets in A contain a and b respectively, $G \cap H = (U \cap A) \cap (V \cap A) = (U \cap V) \cap A = \phi \cap A$ $A = \phi$. Hence A is a $\lambda_c - T_2$ space.

Theorem 4.2.12

If X is a $\lambda_c - T_2$ space, then for any two distinct points $a, b \in X$, there are λ_c -closed sets A and B such that $a \in A, b$ $\notin A, a \notin B, b \in B$ and $X = A \cup B$.

Proof.Since X is $\lambda_c - T_2$ space, then for any distinct $a, b \in X$, there exist λ_c -open sets U and V such that $a \in U, b \in V$ and U $\cap V = \phi$. Therefore $U \subseteq X \setminus V$ and $V \subseteq$ $X \setminus U$. Hence $a \in X \setminus V$. Put $X \setminus V = A$. This gives $a \in A$ and $b \notin A$. Also $b \in X \setminus U$. Put $X \setminus U = B$. Therefore, $b \in B$ and $a \notin$ B.Moreover $A \cup B = (X \setminus U) \cup (X \setminus V) =$ X.

Theorem 4.2.13

If X is a $\lambda_c - T_2$ space, then for every point a of X, $\{a\} = \bigcap C_a$, where C_a is a λ_c -closed set containing a λ_c -open set U which contains a.

Proof.Since X is a $\lambda_c - T_2$ space, therefore for any a, b such that $a \neq b$, there exist λ_c -open sets U and V such that $a \in U$, $b \in V$ and $U \cap V = \phi$. This gives $U \subseteq X \setminus V$. Since $X \setminus V$ is λ_c closed and $U \subseteq X \setminus V = C_a$, a λ_c closed set which contains a and does not contain b. Since b is an arbitrary point of X different from a, then $b \notin \bigcap C_a$. Thus *a* is the only point which is in every λ_c closed which contains *a*, that is, $\{a\} = \bigcap C_a$. Hence the proof.

Definition 4.2.14

Let (X, τ) be a topological space, A sequence $\{x_k\}$ is said to λ_c -converge to a point $x \in X$, denoted $x_k \xrightarrow{\lambda c} x$, if for every λ_c -open set U containing x, there exists a positive integer n such that $x_k \in U$ for all $k \ge n$.

Now we prove the following:

Theorem 4.2.15

Let X be a $\lambda_c - T_2$ space. Then any sequence in X can λ_c -converge to at most one point.

Proof. Let $\{x_k\}$ be a sequence in Xwhich is λ_c -converging to x and y. Then by definition of $\lambda_c - T_2$ space, there exist λ_c -open sets U, V such that $x \in U, y \in V$ and $U \cap V = \phi$. Since $x_k \xrightarrow{\lambda c} x$ therefore there exists a positive integer n_1 such that $x_k \in U$, for all $k \ge n_1$. Also $x_k \xrightarrow{\lambda c} y$, therefore there exists a positive integer n_2 such that $x_k \in V$, for all $k \ge n_2$. Let $n_0 = \max\{n_1, n_2\}$. Then $x_k \in U$, and $x_k \in V$, for all $k \ge n_0$ or $x_k \in U \cap V$, for all $k \ge n_0$. This contradiction proves that $\{x_k\} \lambda_c$ converges to at most one point.

Example 4.2.16

Let $X = \{a, b, c\}$ and $\tau = P(X)$. We define s-operation $\lambda : SO(X) \rightarrow P(X)$ by $\lambda(A) = X$ for $\phi \neq A \subseteq X$. Then $SO_{\lambda c}(X) = \{\phi, X\}$, then the sequence $\{x_k\}$ where $x_k = x$ for each k, is λ_c converging to y, for all $y \in X$.

Remark 4.2.17

From Definitions 3.11, 4.1.2, 4.1.11, 4.1.19 and 4.2.3, Examples 4.1.5, 4.1.14, 4.1.27 and 4.2.6, and Theorems 4.1.13, 4.1.23 and 4.2.35, we get the following implications:

 $\lambda_c - T_2 \longrightarrow \lambda_c - T_1 \longrightarrow \lambda_c - T_{1/2} \longrightarrow \lambda_c - T_0$ $\downarrow \downarrow \downarrow \downarrow \downarrow$ semi- $T_2 \longrightarrow$ semi - $T_1 \longrightarrow$ semi - $T_{1/2} \longrightarrow$ semi - T_0 . **Proposition 4.2.18 Proof.** Follows from Theorem 3.8 and Let $f:(X,\tau) \to (Y,\sigma)$ be $a(\lambda,\gamma)$ Corollary 4.2.9. Corollary 4.2.20 -homeomorphism. If (X, τ) is $\lambda_c - T_{1/2}$ If $f:(X,\tau) \to (Y,\sigma)$ is a one to then (Y, σ) is $\gamma_c - T_{1/2}$. one, contra (λ, γ) -continuous function **Proof.**It is follows from Theorem 4.1.18. and satisfies the (λ, γ) -interiority Corollary 4.2.19 condition, and let (Y, σ) be a γ_c - T_1 If $f:(X,\tau) \to (Y,\sigma)$ is a one to one, contra (λ, γ) -continuous function space. Then (X, τ) is also $\lambda_c - T_1$ space. satisfies the (λ, γ) -interiority and **Proof.** Follows from Theorem 3.8 and condition, and let (Y,σ) be a γ_c - T_2 Theorem 4.1.2 space. Then (X, τ) is a λ_c - T_i space, for $i = 0, \frac{1}{2}, 1$.

References

- 1. Ahmad B., H.S., *Properties of Gamma-operations in topological spaces.* Aligarh Bull. Math, 2003. **22**(1): p. 45-51.
- Kasahara, S., Operation-compact spaces. Math. Japonica, 1979.
 24(1): p. 97-105.
- 3. Namiq, S.F., NEW TYPES OF CONTINUITY AND SEPARATION AXIOMS BASED ON OPERATIONS IN TOPOLOGICAL SPACES. 2011, University of Sulaimani.
- 4. Khalaf, A.B. and S.F. Namiq, [[lambda]. sub. c]-open sets and [[lambda]. sub. c]-separation axioms in topological spaces. Journal of Advanced Studies in Topology, 2013. 4(1): p. 150-159.
- 5. Namiq, S.F., *lambda–Connected Spaces Via lambda-Open Sets.* Garmian University, 2015. **1**: p. 165-178.
- 6. Namiq, S.F., ON Minimal λ^* -Open Sets. International Journal of Scientific & Engineering Research. **5**(10).
- Namiq, A.B.K.a.S.F., ON Minimal λc-Open Sets Via λc-Open Sets. Asian Journal of Fuzzy and Applied Mathematics 2014. 02(06).
- 8. Khalaf, A.B. and S.F. Namiq, Generalized λ -Closed Sets and-Continuous Functions. International Journal of Scientific & Engineering Research, 2012. **03**(12).
- 9. Levine, N., Semi-open sets and semi-continuity in topological spaces. The American

Mathematical Monthly, 1963. **70**(1): p. 36-41.

- 10. Maheshwari, S. and R. Prasad, *Some new separation axioms.* ANNALES DE LA SOCIETE SCIENTIFIQUE DE BRUXELLES SERIES 1-SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1975. **89**(3): p. 395-402.
- Bhattacharyya, P. and B. Lahiri, Semi-generalized closed sets in topology. Indian J. Math, 1987. 29(3): p. 375-382.

ER